Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Eur J Radiol ; 164: 110858, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-2320699

RESUMEN

PURPOSE: To develop a generative adversarial network (GAN) to quantify COVID-19 pneumonia on chest radiographs automatically. MATERIALS AND METHODS: This retrospective study included 50,000 consecutive non-COVID-19 chest CT scans in 2015-2017 for training. Anteroposterior virtual chest, lung, and pneumonia radiographs were generated from whole, segmented lung, and pneumonia pixels from each CT scan. Two GANs were sequentially trained to generate lung images from radiographs and to generate pneumonia images from lung images. GAN-driven pneumonia extent (pneumonia area/lung area) was expressed from 0% to 100%. We examined the correlation of GAN-driven pneumonia extent with semi-quantitative Brixia X-ray severity score (one dataset, n = 4707) and quantitative CT-driven pneumonia extent (four datasets, n = 54-375), along with analyzing a measurement difference between the GAN and CT extents. Three datasets (n = 243-1481), where unfavorable outcomes (respiratory failure, intensive care unit admission, and death) occurred in 10%, 38%, and 78%, respectively, were used to examine the predictive power of GAN-driven pneumonia extent. RESULTS: GAN-driven radiographic pneumonia was correlated with the severity score (0.611) and CT-driven extent (0.640). 95% limits of agreements between GAN and CT-driven extents were -27.1% to 17.4%. GAN-driven pneumonia extent provided odds ratios of 1.05-1.18 per percent for unfavorable outcomes in the three datasets, with areas under the receiver operating characteristic curve (AUCs) of 0.614-0.842. When combined with demographic information only and with both demographic and laboratory information, the prediction models yielded AUCs of 0.643-0.841 and 0.688-0.877, respectively. CONCLUSION: The generative adversarial network automatically quantified COVID-19 pneumonia on chest radiographs and identified patients with unfavorable outcomes.


Asunto(s)
COVID-19 , Neumonía , Humanos , COVID-19/diagnóstico por imagen , Estudios Retrospectivos , SARS-CoV-2 , Neumonía/diagnóstico por imagen , Pulmón/diagnóstico por imagen
2.
Radiology ; 307(3): e230454, 2023 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2287948
3.
J Med Internet Res ; 25: e42717, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: covidwho-2268245

RESUMEN

BACKGROUND: An artificial intelligence (AI) model using chest radiography (CXR) may provide good performance in making prognoses for COVID-19. OBJECTIVE: We aimed to develop and validate a prediction model using CXR based on an AI model and clinical variables to predict clinical outcomes in patients with COVID-19. METHODS: This retrospective longitudinal study included patients hospitalized for COVID-19 at multiple COVID-19 medical centers between February 2020 and October 2020. Patients at Boramae Medical Center were randomly classified into training, validation, and internal testing sets (at a ratio of 8:1:1, respectively). An AI model using initial CXR images as input, a logistic regression model using clinical information, and a combined model using the output of the AI model (as CXR score) and clinical information were developed and trained to predict hospital length of stay (LOS) ≤2 weeks, need for oxygen supplementation, and acute respiratory distress syndrome (ARDS). The models were externally validated in the Korean Imaging Cohort of COVID-19 data set for discrimination and calibration. RESULTS: The AI model using CXR and the logistic regression model using clinical variables were suboptimal to predict hospital LOS ≤2 weeks or the need for oxygen supplementation but performed acceptably in the prediction of ARDS (AI model area under the curve [AUC] 0.782, 95% CI 0.720-0.845; logistic regression model AUC 0.878, 95% CI 0.838-0.919). The combined model performed better in predicting the need for oxygen supplementation (AUC 0.704, 95% CI 0.646-0.762) and ARDS (AUC 0.890, 95% CI 0.853-0.928) compared to the CXR score alone. Both the AI and combined models showed good calibration for predicting ARDS (P=.079 and P=.859). CONCLUSIONS: The combined prediction model, comprising the CXR score and clinical information, was externally validated as having acceptable performance in predicting severe illness and excellent performance in predicting ARDS in patients with COVID-19.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Síndrome de Dificultad Respiratoria , Humanos , Inteligencia Artificial , COVID-19/diagnóstico por imagen , Estudios Longitudinales , Estudios Retrospectivos , Radiografía , Oxígeno , Pronóstico
4.
Radiology ; 306(2): e222600, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-2194179

RESUMEN

This article reviews the radiologic and pathologic findings of the epithelial and endothelial injuries in COVID-19 pneumonia to help radiologists understand the fundamental nature of the disease. The radiologic and pathologic manifestations of COVID-19 pneumonia result from epithelial and endothelial injuries based on viral toxicity and immunopathologic effects. The pathologic features of mild and reversible COVID-19 pneumonia involve nonspecific pneumonia or an organizing pneumonia pattern, while the pathologic features of potentially fatal and irreversible COVID-19 pneumonia are characterized by diffuse alveolar damage followed by fibrosis or acute fibrinous organizing pneumonia. These pathologic responses of epithelial injuries observed in COVID-19 pneumonia are not specific to SARS-CoV-2 but rather constitute universal responses to viral pneumonia. Endothelial injury in COVID-19 pneumonia is a prominent feature compared with other types of viral pneumonia and encompasses various vascular abnormalities at different levels, including pulmonary thromboembolism, vascular engorgement, peripheral vascular reduction, a vascular tree-in-bud pattern, and lung perfusion abnormality. Chest CT with different imaging techniques (eg, CT quantification, dual-energy CT perfusion) can fully capture the various manifestations of epithelial and endothelial injuries. CT can thus aid in establishing prognosis and identifying patients at risk for deterioration.


Asunto(s)
COVID-19 , Enfermedades Pulmonares , Neumonía Viral , Neumonía , Humanos , COVID-19/patología , SARS-CoV-2 , Neumonía Viral/patología , Enfermedades Pulmonares/patología , Radiólogos , Pulmón/patología
5.
Korean J Radiol ; 21(10): 1150-1160, 2020 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2089785

RESUMEN

OBJECTIVE: To describe the experience of implementing a deep learning-based computer-aided detection (CAD) system for the interpretation of chest X-ray radiographs (CXR) of suspected coronavirus disease (COVID-19) patients and investigate the diagnostic performance of CXR interpretation with CAD assistance. MATERIALS AND METHODS: In this single-center retrospective study, initial CXR of patients with suspected or confirmed COVID-19 were investigated. A commercialized deep learning-based CAD system that can identify various abnormalities on CXR was implemented for the interpretation of CXR in daily practice. The diagnostic performance of radiologists with CAD assistance were evaluated based on two different reference standards: 1) real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) results for COVID-19 and 2) pulmonary abnormality suggesting pneumonia on chest CT. The turnaround times (TATs) of radiology reports for CXR and rRT-PCR results were also evaluated. RESULTS: Among 332 patients (male:female, 173:159; mean age, 57 years) with available rRT-PCR results, 16 patients (4.8%) were diagnosed with COVID-19. Using CXR, radiologists with CAD assistance identified rRT-PCR positive COVID-19 patients with sensitivity and specificity of 68.8% and 66.7%, respectively. Among 119 patients (male:female, 75:44; mean age, 69 years) with available chest CTs, radiologists assisted by CAD reported pneumonia on CXR with a sensitivity of 81.5% and a specificity of 72.3%. The TATs of CXR reports were significantly shorter than those of rRT-PCR results (median 51 vs. 507 minutes; p < 0.001). CONCLUSION: Radiologists with CAD assistance could identify patients with rRT-PCR-positive COVID-19 or pneumonia on CXR with a reasonably acceptable performance. In patients suspected with COVID-19, CXR had much faster TATs than rRT-PCRs.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/diagnóstico por imagen , Aprendizaje Profundo , Neumonía Viral/diagnóstico por imagen , Radiografía Torácica , Adulto , Anciano , COVID-19 , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Radiografía Torácica/métodos , Estudios Retrospectivos , SARS-CoV-2 , Tomografía Computarizada por Rayos X/métodos
6.
J Comput Assist Tomogr ; 46(3): 413-422, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1784429

RESUMEN

OBJECTIVE: We aimed to develop and validate the automatic quantification of coronavirus disease 2019 (COVID-19) pneumonia on computed tomography (CT) images. METHODS: This retrospective study included 176 chest CT scans of 131 COVID-19 patients from 14 Korean and Chinese institutions from January 23 to March 15, 2020. Two experienced radiologists semiautomatically drew pneumonia masks on CT images to develop the 2D U-Net for segmenting pneumonia. External validation was performed using Japanese (n = 101), Italian (n = 99), Radiopaedia (n = 9), and Chinese data sets (n = 10). The primary measures for the system's performance were correlation coefficients for extent (%) and weight (g) of pneumonia in comparison with visual CT scores or human-derived segmentation. Multivariable logistic regression analyses were performed to evaluate the association of the extent and weight with symptoms in the Japanese data set and composite outcome (respiratory failure and death) in the Spanish data set (n = 115). RESULTS: In the internal test data set, the intraclass correlation coefficients between U-Net outputs and references for the extent and weight were 0.990 and 0.993. In the Japanese data set, the Pearson correlation coefficients between U-Net outputs and visual CT scores were 0.908 and 0.899. In the other external data sets, intraclass correlation coefficients were between 0.949-0.965 (extent) and between 0.978-0.993 (weight). Extent and weight in the top quartile were independently associated with symptoms (odds ratio, 5.523 and 10.561; P = 0.041 and 0.016) and the composite outcome (odds ratio, 9.365 and 7.085; P = 0.021 and P = 0.035). CONCLUSIONS: Automatically quantified CT extent and weight of COVID-19 pneumonia were well correlated with human-derived references and independently associated with symptoms and prognosis in multinational external data sets.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Neumonía , COVID-19/diagnóstico por imagen , Humanos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
7.
Taehan Yongsang Uihakhoe Chi ; 82(6): 1505-1523, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1551486

RESUMEN

Purpose: Although chest CT has been discussed as a first-line test for coronavirus disease 2019 (COVID-19), little research has explored the implications of CT exposure in the population. To review chest CT protocols and radiation doses in COVID-19 publications and explore the number needed to diagnose (NND) and the number needed to predict (NNP) if CT is used as a first-line test. Materials and Methods: We searched nine highly cited radiology journals to identify studies discussing the CT-based diagnosis of COVID-19 pneumonia. Study-level information on the CT protocol and radiation dose was collected, and the doses were compared with each national diagnostic reference level (DRL). The NND and NNP, which depends on the test positive rate (TPR), were calculated, given a CT sensitivity of 94% (95% confidence interval [CI]: 91%-96%) and specificity of 37% (95% CI: 26%-50%), and applied to the early outbreak in Wuhan, New York, and Italy. Results: From 86 studies, the CT protocol and radiation dose were reported in 81 (94.2%) and 17 studies (19.8%), respectively. Low-dose chest CT was used more than twice as often as standard-dose chest CT (39.5% vs.18.6%), while the remaining studies (44.2%) did not provide relevant information. The radiation doses were lower than the national DRLs in 15 of the 17 studies (88.2%) that reported doses. The NND was 3.2 scans (95% CI: 2.2-6.0). The NNPs at TPRs of 50%, 25%, 10%, and 5% were 2.2, 3.6, 8.0, 15.5 scans, respectively. In Wuhan, 35418 (TPR, 58%; 95% CI: 27710-56755) to 44840 (TPR, 38%; 95% CI: 35161-68164) individuals were estimated to have undergone CT examinations to diagnose 17365 patients. During the early surge in New York and Italy, daily NNDs changed up to 5.4 and 10.9 times, respectively, within 10 weeks. Conclusion: Low-dose CT protocols were described in less than half of COVID-19 publications, and radiation doses were frequently lacking. The number of populations involved in a first-line diagnostic CT test could vary dynamically according to daily TPR; therefore, caution is required in future planning.

9.
PLoS One ; 16(6): e0252440, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1259242

RESUMEN

Chest X-rays (CXRs) can help triage for Coronavirus disease (COVID-19) patients in resource-constrained environments, and a computer-aided detection system (CAD) that can identify pneumonia on CXR may help the triage of patients in those environment where expert radiologists are not available. However, the performance of existing CAD for identifying COVID-19 and associated pneumonia on CXRs has been scarcely investigated. In this study, CXRs of patients with and without COVID-19 confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) were retrospectively collected from four and one institution, respectively, and a commercialized, regulatory-approved CAD that can identify various abnormalities including pneumonia was used to analyze each CXR. Performance of the CAD was evaluated using area under the receiver operating characteristic curves (AUCs), with reference standards of the RT-PCR results and the presence of findings of pneumonia on chest CTs obtained within 24 hours from the CXR. For comparison, 5 thoracic radiologists and 5 non-radiologist physicians independently interpreted the CXRs. Afterward, they re-interpreted the CXRs with corresponding CAD results. The performance of CAD (AUCs, 0.714 and 0.790 against RT-PCR and chest CT, respectively hereinafter) were similar with those of thoracic radiologists (AUCs, 0.701 and 0.784), and higher than those of non-radiologist physicians (AUCs, 0.584 and 0.650). Non-radiologist physicians showed significantly improved performance when assisted with the CAD (AUCs, 0.584 to 0.664 and 0.650 to 0.738). In addition, inter-reader agreement among physicians was also improved in the CAD-assisted interpretation (Fleiss' kappa coefficient, 0.209 to 0.322). In conclusion, radiologist-level performance of the CAD in identifying COVID-19 and associated pneumonia on CXR and enhanced performance of non-radiologist physicians with the CAD assistance suggest that the CAD can support physicians in interpreting CXRs and helping image-based triage of COVID-19 patients in resource-constrained environment.


Asunto(s)
COVID-19/diagnóstico por imagen , Aprendizaje Profundo , Pulmón , Interpretación de Imagen Radiográfica Asistida por Computador , Anciano , Femenino , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Masculino , Persona de Mediana Edad , Radiografía Torácica , República de Corea/epidemiología , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
11.
Radiol Cardiothorac Imaging ; 2(2): e200107, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-1155975

RESUMEN

PURPOSE: To study the extent of pulmonary involvement in coronavirus 19 (COVID-19) with quantitative CT and to assess the impact of disease burden on opacity visibility on chest radiographs. MATERIALS AND METHODS: This retrospective study included 20 pairs of CT scans and same-day chest radiographs from 17 patients with COVID-19, along with 20 chest radiographs of controls. All pulmonary opacities were semiautomatically segmented on CT images, producing an anteroposterior projection image to match the corresponding frontal chest radiograph. The quantitative CT lung opacification mass (QCTmass) was defined as (opacity attenuation value + 1000 HU)/1000 × 1.065 (g/mL) × combined volume (cm3) of the individual opacities. Eight thoracic radiologists reviewed the 40 radiographs, and a receiver operating characteristic curve analysis was performed for the detection of lung opacities. Logistic regression analysis was performed to identify factors affecting opacity visibility on chest radiographs. RESULTS: The mean QCTmass per patient was 72.4 g ± 120.8 (range, 0.7-420.7 g), and opacities occupied 3.2% ± 5.8 (range, 0.1%-19.8%) and 13.9% ± 18.0 (range, 0.5%-57.8%) of the lung area on the CT images and projected images, respectively. The radiographs had a median sensitivity of 25% and specificity of 90% among radiologists. Nineteen of 186 opacities were visible on chest radiographs, and a median area of 55.8% of the projected images was identifiable on radiographs. Logistic regression analysis showed that QCTmass (P < .001) and combined opacity volume (P < .001) significantly affected opacity visibility on radiographs. CONCLUSION: QCTmass varied among patients with COVID-19. Chest radiographs had high specificity for detecting lung opacities in COVID-19 but a low sensitivity. QCTmass and combined opacity volume were significant determinants of opacity visibility on radiographs.Earlier incorrect version appeared online. This article was corrected on April 6, 2020 and December 14, 2020.Supplemental material is available for this article.© RSNA, 2020.

12.
Taehan Yongsang Uihakhoe Chi ; 81(6): 1334-1347, 2020 Nov.
Artículo en Coreano | MEDLINE | ID: covidwho-1004669

RESUMEN

Coronavirus disease (COVID-19) has threatened public health as a global pandemic. Chest CT and radiography are crucial in managing COVID-19 in addition to reverse transcription-polymerase chain reaction, which is the gold standard for COVID-19 diagnosis. This is a review of the current status of the use of chest CT and radiography in COVID-19 diagnosis and management and an introduction of early representative studies on the application of artificial intelligence to chest CT and radiography. The authors also share their experiences to provide insights into the future value of artificial intelligence.

13.
Radiology ; 296(1): 172-180, 2020 07.
Artículo en Inglés | MEDLINE | ID: covidwho-38290

RESUMEN

With more than 900 000 confirmed cases worldwide and nearly 50 000 deaths during the first 3 months of 2020, the coronavirus disease 2019 (COVID-19) pandemic has emerged as an unprecedented health care crisis. The spread of COVID-19 has been heterogeneous, resulting in some regions having sporadic transmission and relatively few hospitalized patients with COVID-19 and others having community transmission that has led to overwhelming numbers of severe cases. For these regions, health care delivery has been disrupted and compromised by critical resource constraints in diagnostic testing, hospital beds, ventilators, and health care workers who have fallen ill to the virus exacerbated by shortages of personal protective equipment. Although mild cases mimic common upper respiratory viral infections, respiratory dysfunction becomes the principal source of morbidity and mortality as the disease advances. Thoracic imaging with chest radiography and CT are key tools for pulmonary disease diagnosis and management, but their role in the management of COVID-19 has not been considered within the multivariable context of the severity of respiratory disease, pretest probability, risk factors for disease progression, and critical resource constraints. To address this deficit, a multidisciplinary panel comprised principally of radiologists and pulmonologists from 10 countries with experience managing patients with COVID-19 across a spectrum of health care environments evaluated the utility of imaging within three scenarios representing varying risk factors, community conditions, and resource constraints. Fourteen key questions, corresponding to 11 decision points within the three scenarios and three additional clinical situations, were rated by the panel based on the anticipated value of the information that thoracic imaging would be expected to provide. The results were aggregated, resulting in five main and three additional recommendations intended to guide medical practitioners in the use of chest radiography and CT in the management of COVID-19.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/diagnóstico por imagen , Pandemias , Neumonía Viral/diagnóstico por imagen , Radiografía Torácica/métodos , COVID-19 , Consenso , Infecciones por Coronavirus/fisiopatología , Infecciones por Coronavirus/virología , Progresión de la Enfermedad , Salud Global , Adhesión a Directriz , Humanos , Equipo de Protección Personal , Neumonía Viral/fisiopatología , Neumonía Viral/virología , Radiografía Torácica/instrumentación , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Sociedades Médicas , Triaje , Grabación en Video
14.
Chest ; 158(1): 106-116, 2020 07.
Artículo en Inglés | MEDLINE | ID: covidwho-634902

RESUMEN

With more than 900,000 confirmed cases worldwide and nearly 50,000 deaths during the first 3 months of 2020, the coronavirus disease 2019 (COVID-19) pandemic has emerged as an unprecedented health care crisis. The spread of COVID-19 has been heterogeneous, resulting in some regions having sporadic transmission and relatively few hospitalized patients with COVID-19 and others having community transmission that has led to overwhelming numbers of severe cases. For these regions, health care delivery has been disrupted and compromised by critical resource constraints in diagnostic testing, hospital beds, ventilators, and health care workers who have fallen ill to the virus exacerbated by shortages of personal protective equipment. Although mild cases mimic common upper respiratory viral infections, respiratory dysfunction becomes the principal source of morbidity and mortality as the disease advances. Thoracic imaging with chest radiography and CT are key tools for pulmonary disease diagnosis and management, but their role in the management of COVID-19 has not been considered within the multivariable context of the severity of respiratory disease, pretest probability, risk factors for disease progression, and critical resource constraints. To address this deficit, a multidisciplinary panel comprised principally of radiologists and pulmonologists from 10 countries with experience managing patients with COVID-19 across a spectrum of health care environments evaluated the utility of imaging within three scenarios representing varying risk factors, community conditions, and resource constraints. Fourteen key questions, corresponding to 11 decision points within the three scenarios and three additional clinical situations, were rated by the panel based on the anticipated value of the information that thoracic imaging would be expected to provide. The results were aggregated, resulting in five main and three additional recommendations intended to guide medical practitioners in the use of chest radiography and CT in the management of COVID-19.


Asunto(s)
Infecciones por Coronavirus , Pulmón/diagnóstico por imagen , Pandemias , Manejo de Atención al Paciente , Neumonía Viral , Radiografía Torácica/métodos , Enfermedades Respiratorias , Tomografía Computarizada por Rayos X/métodos , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/fisiopatología , Infecciones por Coronavirus/terapia , Diagnóstico Diferencial , Progresión de la Enfermedad , Diagnóstico Precoz , Humanos , Cooperación Internacional , Manejo de Atención al Paciente/métodos , Manejo de Atención al Paciente/normas , Neumonía Viral/diagnóstico , Neumonía Viral/epidemiología , Neumonía Viral/fisiopatología , Neumonía Viral/terapia , Enfermedades Respiratorias/diagnóstico , Enfermedades Respiratorias/virología , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA